Polymorphism



public class GameItem {

private double xlLoc;

|
R I I I n h rlt n private double ylLoc;
public GameItem(double xLoc, double yLoc) {

this.xLoc = xLoc;
this.yLoc = ylLoc;

¥
Use the extends keyword to public void use()

) _ _ System.out.println("Item Used");
Inherit all state and behavior )
from another class

public class Weapon extends GameIltem {

i i int d :
WeapOn and HealthPOt|On gl:b\{aizeWe%;on?giggle)xloc, double yLoc, int damage) A
: i xloc, yL ;
bOth Inherlt \ iﬁggrdamg;e Z ggmage;
xLoc", "yLoc", "use’, and the public int getbamage() {
constructor from Gameltem , return damages
@Override .
: bli id ()
WeapOn rep|aCGS/OverrldeS the r})u S;s}c/gm.oEi?println("Damage dealt: " + this.damage);
iInherited behavior of the use }
method
public class HealthPotion extends GameItem A{
private 1int increase;
E;LJF)EBF constructor must k)EB public He?lthPotion(?ouble xLoc, double ylLoc, int increase) A
Loc, VYL ;
called in subclass constructors this.increse = increase;

}

}




Recall Inheritance

e Weapon
TaY public class GameItem {
exp“CIHy private double xLoc;
private double ylLoc; :
eXtendS public GameItem(double xLoc, double yLoc) { Object
this.xLoc = xLoc;
Gameltem this.ylLoc yLoc;
I3
public void use() {
O Gameltem \ System.out.println("Item Used");
implicitly
eXtendS Gameltem
: public class Weapon extends GameIltem {
ObJeCt private int damage;
public Weapon(double xloc, double yLoc, int damage) {
super(xloc, ylLoc);
this.damage = damage;
I3
public int getDamage() {
return damage;
e Weapon has the yoo
@Override Weapon
state and public void use() { |
3 System.out.println("Damage dealt: " + this.damage);
behavior of all 3 b

classes



When a class
extends another
class, we call this
an "Is-a"
relationship

Is-a relationships

can be direct or
Indirect

Weapon is-a
CEINENGE

Weapon is-an
Object

Inheritance

public class GamelItem {

private double xLoc;

private double ylLoc;

public GameItem(double xLoc, double yLoc) {
this.xLoc = xLoc;

}

this.yLoc = ylLoc;

public void use() {

}

System.out.println("Item Used");

public class Weapon extends GameIltem {
private int damage;
public Weapon(double xloc, double yLoc, int damage) {

¥

super(xloc, ylLoc);
this.damage = damage;

public int getDamage() {

¥

return damage;

@Override
public void use() {

L

System.out.println("Damage dealt: " + this.damage);

Object

Gameltem

Weapon



Polymorphism

If an object Is a type

It can be stored In variables of that type



Polymorphism

e Weapon is 3 different types object
e Polymorphism
. POIy =2 Many Gameltem
e Morph -> Forms
* Polymorphism -> Many Forms

Weapon

e Can store objects in variables of any of their types



Polymorphism

Object
e All of these assignments are allowed
e \Weapon has 3 different types!
Gameltem
public static void main(String[] args) {

Weapon weaponl = new Weapon(1.0, 1.0, 10);

GameItem weapon2 = new Weapon(1.0, 1.0, 10);

Object weapon3 = new Weapon(1.0, 1.0, 10); Weapon

}




Polymorphism

If an object Is a type

It can be stored In variables of that type



Polymorphism

e Weapon has 3 different types

e (Can store values in variables of any of their types

e Thisis polymorphism.

e What implications does this have?

public static void main(String[] args) {
Weapon weaponl = new Weapon(1.0, 1.0, 10);

GameItem weapon2 = new Weapon(1.0, 1.0, 10);

Object weapon3 = new Weapon(1.0, 1.0, 10);
}




Polymorphism

e (Can only access state and behavior of the variable type
e Defined getDamage in the Weapon class
e (Gameltem has no such method

e Even when weapon?2 stores a reference to a Weapon
object, it cannot access getDamage

public static void main(String[] args) {
Weapon weaponl = new Weapon(1.0, 1.0, 10);
GameItem weapon2 = new Weapon(1.0, 1.0, 10);
Object weapon3 = new Weapon(1.0, 1.0, 10);

weaponl.getDamage() ;
// weapon2.getDamage(); Does not compile
// weapon3.getDamage(); Does not compile

L




Polymorphism

e (Can only access state and behavior of the variable type

e The use method exists in the Gameltem class and is inherited
by Weapon

e (Can call this method from variables of both types
e The Object class does not know about the use method

e (Cannot call use from a variable of type Object

public static void main(String[] args) {
Player player = new Player(50);
Weapon weaponl = new Weapon(1.0, 1.0, 10);
GameItem weapon2 = new Weapon(1.0, 1.0, 10);

Object weapon3 = new Weapon(1.0, 1.0, 10);
weaponl.use(player);

weapon2.use(player);

weapon3.use(player); Does not compile




Polymorphism
If the method is overridden, the override method is

called regardless of the type of the variable

The type of the variable determines which methods can
be called

The type of object determines which method /s called

public static void main(String[] args) {
Player player = new Player(50);
Weapon weaponl = new Weapon(1.0, 1.0, 10);
GameItem weapon2 = new Weapon(1.0, 1.0, 10);

Object weapon3 = new Weapon(1.0, 1.0, 10);
weaponl.use(player);
weapon2.use(player);

// weapon3.use(player), Does not compile

}




Polymorphism

e The toString method is defined in the Object class
e (an call toString from any variable type

e “EXcept primitives

public static void main(String[] args) {
Player player = new Player(50);
Weapon weaponl = new Weapon(1.0, 1.0, 10);
GameItem weapon2 = new Weapon(1.0, 1.0, 10);

Object weapon3 = new Weapon(1.0, 1.0, 10);
weaponl.toString();
weapon2.toString();
weapon3.toString();




Polymorphism

Why use polymorphism If it restricts
functionality?

public class Player extends GameIltem A
private int maxHP;

e Simplify other classes private int HP;

private int damageDealt;

For the Player class to use a P ey gy e maxhe) £
: this.maxHP = maxHP;
Gameltem, write 2 methods thic HP = MaxHP:
this.damageDealt = 4;
e One to use a Weapon '
public void use$tem(GameItem item){
e One to use a HealthPotion ,  rrem-uselthis);
] : id

player.setHP(player.getHP() - this.damageDealt);

need another method in the Player y
class

Tedious to expand the game



Polymorphism

Instead, write a single method that takes
a Gameltem!

public class Player extends GameIltem A

private int maxHP;

This method can be called with a private int HP;
_ private int damageDealt;
reference to a Weapon or HealthPotion as
public Player(int maxHP) {
an argument super(0, 0);

this.maxHP = maxHP:

. . his.HP = maxHP;
The argument value is assigned to the thic: damagebenls = 4:

parameter variable

public void useItem(GameItem item){

e Thisis a legal assignment because of ,  rrem-uselthis);
polymorphism! override
void use(Player player) {

Can add any number Of Gameltem \ player.setHP(player.getHP() - this.damageDealt);
classes to our game without changing the
Player class

e Easy to add more features to your game



Polymorphism

e |n this method, we can't access any

methOdS that are nOt knOwn tO the public class Player extends GameIltem {
Gameltem class ivate int
private int damageDealt;
e This sacrifice is often worth it for oublic Player(int maxHP) {
the added versatility of methods this nakHP - maxiP;
that take super types thic. damagebeals = 4;

public void useItem(GameItem item){
item.use(this);
I3

@Override
void use(Player player) {

player.setHP(player.getHP() - this.damageDealt);

}




Polymorphism

Polymorphism and data structures
e There's more!

e We can create data structures of a super type

e T[hese data structures can store any type that inherits
from that type

e This ArrayList of Gameltems can store HealthPotions
and Weapons!

e \We have a data structure that stores multiple
different types

e Something we took for granted in JS and Python

public class Player extends GameIltem <
private int maxHP;
private int HP;
private int damageDealt;
private ArraylList<GamelItem> inventory;

public Player(int maxHP) {
super(0, 0);
this.maxHP = maxHP;
this.HP = maxHP;
this.damageDealt = 4;
this.inventory = new ArrayList<>();

}

public void useItem(GameItem item){
item.use(this);
I3

public void pickUpItem(GameItem item) {
this.inventory.add(item);
I3

public void useAllInventoryItems() {
for (GameItem item : this.inventory) {

item.use(this);

¥

this.inventory = new ArrayList<>();

@Override

void use(Player player) {
player.setHP(player.getHP() - this.damageDealt);

I3




Abstract



Abstract Classes

e Methods can be abstract

e Specify the method signature (name,

public |[abstract|class GameItem {
return type, parameters) pr;va & double xLoc;
private double ylLoc;
e Do not define the method (nO bOdy) public GameItem(double xLoc, double yLoc) {

this.xLoc = xLoc;
this.ylLoc = yloc;

e End the method with a semicolon ;

abstract void use(Player player);

e Abstract methods cannot be called

e What would you expect to happen?
Nothing? What if it has a return type?



Abstract Classes

e |f aclass has >0 abstract methods, the
class itself must be abstract

public |[abstract|class GameItem {
private double xLoc;

private double ylLoc;

e Abstract classes cannot be public GameItem(double xLoc, double yLoc) {

this.xLoc = xLoc;

instantiated } this.yloc = ylLoc;

e (Cannot create a new Gameltem if abstract void use(Player player);
Gameltem is abstract

e Prevents anyone from calling an
abstract method

e They only exist to be inherited



Abstract Classes

 Any class inheriting from an abstract _
: : public class GameItem {
class has a requirement to implement all private double xLoc;

private double ylLoc;
abstract methods |
public GameItem(double xLoc, double yLoc) {

this.xLoc = xLoc;

e If the extending class overrides the ,  this.yloc = ylocs
abstract method, it then exists and
can be called

abstract void use(Player player);

e |f asubclass does not implement all
abstract methods, it too must be
abstract



Abstract Classes

Why use abstract methods/classes?

public g class GameItem {
You can only call methods that are known to private double xLoc;
: private double ylLoc;
your variable type
public GameItem(double xLoc, double yLoc) {
this.xL Loc;
Abstract methods are known to the abstract this.yLoc = yLoc;
class ;

abstract void use(Player player);

You can call abstract methods using
polymorphism

Use an abstract method when you want all
Inheriting classes to have a method, but there's
no clear default behavior for the method



Interfaces

e |f we take this one step further, we can
create interfaces

e |nterfaces are similar to classes

public

boolean compare(T a, T b);

e |nterfaces can only have abstract ;
methods
e No instance variables publ@iagvg}?sizeIntDecreasing implements [Comparator<Integers> {
public boolean compare(Integer a, Integer b) {
 No constructor , reruma > b

}

e No methods with definitions

e To inherit an interface, use the
iImplements keyword instead of extends



Interfaces

Why interfaces?

You can only extend one class public

boolean compare(T a, T b);

}

YOU can Implement dsS many Interfaces public class IntDecreasing|implements |Comparator<Integer> {

] g @Override
dS yOU d llke public boolean compare(Integer a, Integer b) {
return a > b;

}

}

*This avoids the potential of multiple
definitions for the same method



