Reference Guide for Stack Tracing Java

February 20, 2024

FYI

e Only a single color is required for memory diagrams, different colors are used (and order written into
code) for greater clarity in this document

1 Basic variables

public static void main(String[] args) {
int anlnt = 10;
double aDouble = 5.8;

boolean aBoolean = true;
String aString = "6.3";
anlnt=20;

e variable changes result in previous values being crossed out and new ones written in so that progression
can be seen
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2 Function calls
2.1 Return value

public static double multiplyByTwo (double input){
double x=input *2;
return x;

}

public static void main(String|[] args) {
double x=7.0;
double result=multiplyByTwo (x);
result=multiplyByTwo (result );
System.out.println (result );
int y=3;

e each function call is put in its own stack frame
e variables created after the function call appear further down the stack

e in/out stands for input/output and is where any command line user input or outputs in terms of print
statements appear
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2.2 No return value

public static void printValue(int n): {
int temp=n+2
System.out.println ("temp = " + temp)

}

public static void main(String[] args) {
printValue (4)
}
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3 For loops

3.1 Dbasic
public static void main(String[] args) {
int x=4;
for (int i=1;i<5;i++){
System.out.println ("i = "41);
}
}
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3.2 scoped variable

public static void main(String[] args) {
int x=4;
for (int i=1;i<5;i++){
int temp=i+2;
}

}

e scoped variables within the loop are crossed out after the loop completes
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4 ArrayLists

public static void main(String[] args) {
ArrayList<Integer> arrl=mew ArrayList <>();
for (int x=0;x<4;x++){
arrl.add(x);
}

System.out.println (arrl);
ArrayList<Integer> arr2=arrl;
System.out.println (arr2);

e note that the assignment statement for arr2 assigns the memory address and does not do a deep copy
— this point is emphasized for newer programmers
e memory addresses all start with Ox to indicate that they are hexadecimal numbers.

— heap addresses are typically given 3 digit numbers

— numbers are typically written in decimal as it is easier for students to grasp at first (as they are
not familiar with hexadecimal, this detail will be corrected in later courses)

— numbers are randomly generated and just must agree on the stack and heap
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4.1

Passed to functions

public static int sum(ArrayList<Integer> arrIn){
int out=0;
for (int x=0;x<arrIn.size ();x++){
out+=arrIn.get (x);
}

return out;

}

public static void main(String[] args) {
ArrayList<Integer> arrl=mew ArrayList <>();
for (int x=0;x<4;x++){
arrl.add(x);
}

System.out.println (arrl);
ArrayList<Integer> arr2=arrl;
System.out.println (arr2);

int total=sum(arrl);
System.out.println ("total: "+total);

when passing variables to functions as arguments the value on the stack associated with the variable
name is the argument to the function that sets the parameter

the dashed lines around index indicate that it is a scoped variable that only exists while the loop exists
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5 HashMaps

e HashMaps are like dictionaries in python
e we loop through them in a manner more similar to loops in python

e public static void main(String[] args) {
HashMap<String , Integer> bills=new HashMap< >();

bills .put(" Allen" ,17);
bills .put("Diggs" ,14);

for (String keys : bills.keySet()){
System.out.println (keys);
}

}
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6 Recursion
6.1 standard recursion

public static int computeGeometricSum(int n){
if (n>0){
int result=computeGeometricSum (n—1);
result4=mn;
return result ;

} else {

return 0;
}

}

public static void main(String[] args) {
int result=computeGeometricSum (3);
}

e cach new call of ¢GS is performed in a new color

— returned values are kept in the color of the method that returns it
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6.2 Tail recursion

public static int computeGeometricSumTail(int n,int total){
if (n>0){
return computeGeometricSumTail(n—1,total+n);




} oelse {

return total;
}
}

public static int c¢GSTHelper(int n){
return computeGeometricSumTail(n,0);
}

public static void main(String[] args) {
int result=cGSTHelper (3);
}

e cach new call of cGST is performed in a new color
— returned values are kept in the color of the method that returns it
e Note that the returns go to the previous functions return and not a variable

— this is why the memory of a stack frame can be released before the following recursive function
call finishes
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7 Classes

public class Player {
private double xLoc;
private double yLoc;
private int maxHP;
private int HP;
private int damageDealt;

public Player (double xLoc,double yLoc,int maxHP){
this .xLoc=xLoc;
this.yLoc=yLoc;
this . maxHP=maxHP;
this .HP=maxHP;
this.damageDealt=4;
}
public int getHP (){
return this .HP;
}

public void takeDamage(int damage){
this .HP-—=damage;
}

public void attack(Player otherPlayer){
otherPlayer .takeDamage(this.damageDealt );
}

public void move(double dx,double dy){
this.xLoct=dx;
this.yLoct=dy;

}

public static void main(String[] args) {
Player playerl=new Player (0.0, 0.0,
Player player2=new Player (7.0, —4.0,
player2 .move(—6.5, 3.4);
player2.attack (playerl);
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8 Inheritance

public class Gameltem {
private double xLoc;
private double yLoc;

public Gameltem (double xLoc,double yLoc){
this.xLoc=xLoc;
this.yLoc=yLoc;

}

public void move(double dx, double dy){
this.xLoct=dx;
this.yLoct=dy;

e public class Teleporter extends Gameltem{
private double dx;
private double dy;

public Teleporter (double xLoc,double yLoc,double dx,double dy){
super (xLoc,yLoc);

this .dx=dx;
this.dy=dy;

}

public static void main(String|[] args) {
Teleporter t=new Teleporter(2,2,3,3);
t.move(2,3);
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9 Polymorphism

public class A {
protected int a;

public A(int a){
this.a=a;
}

}

public class B extends A{
private int b;

public B (int b){
super (b);
this.b=b#2;

}

public class C extends A{
private int c;

public C(int a,int c¢){
super (a);
this.c=c;

}

public class RunABC {
public static void main(String || args) {
A a=new A(1);
A b=new B(2);
A c=new C(3,4);

e Note that polymorphism loooks no different than regular inheritance tracing because we do not include
data type in our memory diagram
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