Reference Guide for Stack Tracing Java

February 20, 2024

FYI

e Only a single color is required for memory diagrams, different colors are used (and order written into
code) for greater clarity in this document

1 Basic variables

public static void main(String[] args) {
int anlnt = 10;
double aDouble = 5.8;

boolean aBoolean = true;
String aString = "6.3";
anlnt=20;

e variable changes result in previous values being crossed out and new ones written in so that progression
can be seen

Stack Heap 10

Name Value

Global Variables

main
CREATE HEAP OBJECT CRIE_II\JIIEE 10
0 anint | 1 20

Q aFloat | 5.8

e aBoolean | true

Q@O -sting 63

CREATE STACK FRAME

CREATE GLOBAL VARIABLE

2 Function calls
2.1 Return value

public static double multiplyByTwo (double input){
double x=input *2;
return x;

}

public static void main(String|[] args) {
double x=7.0;
double result=multiplyByTwo (x);
result=multiplyByTwo (result);
System.out.println (result);
int y=3;

e each function call is put in its own stack frame
e variables created after the function call appear further down the stack

e in/out stands for input/output and is where any command line user input or outputs in terms of print
statements appear

Stack Heap 10

Global Variables 0 ©

main
CREATE HEAP OBJECT
CREATE IO
2 LINE

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

2.2 No return value

public static void printValue(int n): {
int temp=n+2
System.out.println ("temp = " + temp)

}

public static void main(String[] args) {
printValue (4)
}

Stack Heap 10

Name Value
Global Variables temp==6

CREATE HEAP OBJECT
LINE

This stack frame has been crossed out

Hover to view

3 For loops

3.1 Dbasic
public static void main(String[] args) {
int x=4;
for (int i=1;i<5;i++){
System.out.println ("i = "41);
}
}
Stack Heap 10
Name Value
Global Variables i==1 Q
. ji==2
e 1
==3 Q
i==4 Q

3.2 scoped variable

public static void main(String[] args) {
int x=4;
for (int i=1;i<5;i++){
int temp=i+2;
}

}

e scoped variables within the loop are crossed out after the loop completes

Stack Heap

Name Value

Global Variables

main
CREATE HEAP OBJECT

CREATE 10
LINE

4 ArrayLists

public static void main(String[] args) {
ArrayList<Integer> arrl=mew ArrayList <>();
for (int x=0;x<4;x++){
arrl.add(x);
}

System.out.println (arrl);
ArrayList<Integer> arr2=arrl;
System.out.println (arr2);

e note that the assignment statement for arr2 assigns the memory address and does not do a deep copy
— this point is emphasized for newer programmers
e memory addresses all start with Ox to indicate that they are hexadecimal numbers.

— heap addresses are typically given 3 digit numbers

— numbers are typically written in decimal as it is easier for students to grasp at first (as they are
not familiar with hexadecimal, this detail will be corrected in later courses)

— numbers are randomly generated and just must agree on the stack and heap

Stack Heap 10
Name Value

Global Variables ArtayList ® 01,231 @

main Name Value [0,1, 2, 3] @
o olo -]

CREATE 10

o 1(1 ®
o 2|2 -]
00 s s ©

CREATE GLOBAL VARIABLE 0x002

4.1

Passed to functions

public static int sum(ArrayList<Integer> arrIn){
int out=0;
for (int x=0;x<arrIn.size ();x++){
out+=arrIn.get (x);
}

return out;

}

public static void main(String[] args) {
ArrayList<Integer> arrl=mew ArrayList <>();
for (int x=0;x<4;x++){
arrl.add(x);
}

System.out.println (arrl);
ArrayList<Integer> arr2=arrl;
System.out.println (arr2);

int total=sum(arrl);
System.out.println ("total: "+total);

when passing variables to functions as arguments the value on the stack associated with the variable
name is the argument to the function that sets the parameter

the dashed lines around index indicate that it is a scoped variable that only exists while the loop exists

Stack Heap 10
Name Value

Global Variables ArrayList @ o123 @

. Name Value 0,123
0 olo e total: 6 °

11

: .
o 2|2 (=]
00 33 S
0x002

. CREATE HEAP OBJECT
This stack frame has been crossed out _

Hover to view

5 HashMaps

e HashMaps are like dictionaries in python
e we loop through them in a manner more similar to loops in python

e public static void main(String[] args) {
HashMap<String , Integer> bills=new HashMap< >();

bills .put(" Allen" ,17);
bills .put("Diggs" ,14);

for (String keys : bills.keySet()){
System.out.println (keys);
}

}

Stack Heap 10
Name Value
Global Variables HashMap 0 Allen @
main Name Value Diggs Q
(] "Allen” | 17 (-]
CREATE 10
[+ Y %] "Diggs" | 14 o LINE
0x002

e note that the loop still has scoped variables like the previous for loop

6 Recursion
6.1 standard recursion

public static int computeGeometricSum(int n){
if (n>0){
int result=computeGeometricSum (n—1);
result4=mn;
return result ;

} else {

return 0;
}

}

public static void main(String[] args) {
int result=computeGeometricSum (3);
}

e cach new call of ¢GS is performed in a new color

— returned values are kept in the color of the method that returns it

Stack Heap 10

Name Value
Global Variables

i & € X
CREATE HEAP OBJECT cR|E_|Ap-|rEE &
-

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

6.2 Tail recursion

public static int computeGeometricSumTail(int n,int total){
if (n>0){
return computeGeometricSumTail(n—1,total+n);

} oelse {

return total;
}
}

public static int c¢GSTHelper(int n){
return computeGeometricSumTail(n,0);
}

public static void main(String[] args) {
int result=cGSTHelper (3);
}

e cach new call of cGST is performed in a new color
— returned values are kept in the color of the method that returns it
e Note that the returns go to the previous functions return and not a variable

— this is why the memory of a stack frame can be released before the following recursive function
call finishes

Stack Heap 10

Name Value
Global Variables

main
D . _
7/

This stack frame has been crossed out
Hover to view

CREATE HEAP OBJECT CRIE.?NTEE (o)

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

7 Classes

public class Player {
private double xLoc;
private double yLoc;
private int maxHP;
private int HP;
private int damageDealt;

public Player (double xLoc,double yLoc,int maxHP){
this .xLoc=xLoc;
this.yLoc=yLoc;
this . maxHP=maxHP;
this .HP=maxHP;
this.damageDealt=4;
}
public int getHP (){
return this .HP;
}

public void takeDamage(int damage){
this .HP-—=damage;
}

public void attack(Player otherPlayer){
otherPlayer .takeDamage(this.damageDealt);
}

public void move(double dx,double dy){
this.xLoct=dx;
this.yLoct=dy;

}

public static void main(String[] args) {
Player playerl=new Player (0.0, 0.0,
Player player2=new Player (7.0, —4.0,
player2 .move(—6.5, 3.4);
player2.attack (playerl);

10);
10);

10

Stack

Heap

Name Value

Global Variables

main

player1

player2

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

Player

)

xLoc | 0.0

yLoc | 0.0

maxHP | 10

HP | 10 6

damageDealt | 4

0x002

Player

-

xLoc | 70 5
yLoc | -4.0 -6
maxHP | 10

HP | 10

damageDealt | 4

0x003

CREATE HEAP OBJECT

11

CREATE 10 LINE

8 Inheritance

public class Gameltem {
private double xLoc;
private double yLoc;

public Gameltem (double xLoc,double yLoc){
this.xLoc=xLoc;
this.yLoc=yLoc;

}

public void move(double dx, double dy){
this.xLoct=dx;
this.yLoct=dy;

e public class Teleporter extends Gameltem{
private double dx;
private double dy;

public Teleporter (double xLoc,double yLoc,double dx,double dy){
super (xLoc,yLoc);

this .dx=dx;
this.dy=dy;

}

public static void main(String|[] args) {
Teleporter t=new Teleporter(2,2,3,3);
t.move(2,3);

12

Stack Heap 10

Name Value

Global Variables Teleporter (x)

CREATE 10 LINE

xLoc | 2 4

° yLoc | 2 5

o
&
w
o 0 00O

This stack frame has been crossed out
Hover to view 0x002

CREATE HEAP OBJECT

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

13

9 Polymorphism

public class A {
protected int a;

public A(int a){
this.a=a;
}

}

public class B extends A{
private int b;

public B (int b){
super (b);
this.b=b#2;

}

public class C extends A{
private int c;

public C(int a,int c¢){
super (a);
this.c=c;

}

public class RunABC {
public static void main(String || args) {
A a=new A(1);
A b=new B(2);
A c=new C(3,4);

e Note that polymorphism loooks no different than regular inheritance tracing because we do not include
data type in our memory diagram

14

Stack Heap 10
Name Value
Global Variables
main
CREATE 10 LINE
al1

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

This stack frame has been crossed out
Hover to view

Value

0x004

CREATE HEAP OBJECT

15

